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Abstract

Reliable simulations of molecules in condensed phase require the combination

of an accurate quantum mechanical method for the core region, and a realistic

model to describe the interaction with the environment. Additionally, this

combination should not significantly increase the computational cost of the

calculation compared to the corresponding in vacuo case. In this review, we

describe the combination of methods based on coupled cluster (CC) theory

with polarizable classical models for the environment. We use the polarizable

continuum model (PCM) of solvation to discuss the equations, but we also

show how the same theoretical framework can be extended to polarizable force

fields. The theory is developed within the perturbation theory energy and

singles-T density (PTES) scheme, where the environmental response is com-

puted with the CC single excitation amplitudes as an approximation for the

full one-particle reduced density. The CC-PTES combination provides the best

compromise between accuracy and computational effort for CC calculations in

condensed phase, because it includes the response of the environment to the

correlation density at the same computational cost of in vacuo CC. We discuss

a number of numerical applications for ground and excited state properties,

based on the implementation of CC-PTES with single and double excitations

(CCSD-PTES), which show the reliability and computational efficiency of the

method in reproducing experimental or full-CC data.
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1 | INTRODUCTION

Most phenomena of interest in chemistry occur in condensed phase. Thus, accounting for environmental effects in
quantum chemistry calculations is often essential to obtain a correct description of a particular process. Unfortunately,
the quantum mechanical (QM) treatment of the environment is not possible in the vast majority of cases, due to the
computational scaling of even the simplest of QM approaches. Therefore, hybrid or focused models are employed,
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where the core region is treated at a QM level, and the environments is described in a simplified manner, often based
on some classical physics model.1–5 In this way, although an accurate description of the entire system is sacrificed, the
interaction with the core region, where the process of interest occurs, includes the right physics. These classical models
can be based on an atomistic representation of the environment, for instance with a molecular mechanics (MM) force
field,1–3 or on continuum models, where the environment is represented by a polarizable medium characterized by
some macroscopic quantity, for example, the electric permittivity.4,5 Explicit models are obviously more realistic, but
they also require a considerable computational effort to obtain a proper averaging of the possible configurations of the
particles surrounding the core region. MM force fields may be based on a series of fixed atomic charges, or they can
include a polarizable component for the mutual polarization with the core region. In the latter case, the description of
the interaction with the environment is even more realistic, but the computational effort is further increased. On the
other hand, continuum (or implicit) models cannot describe direct core-environment interactions, but they account for
bulk effects and mutual polarization with the core region very efficiently, because the conformational sampling is
implicit in the medium's permittivity.6 The choice of which model to employ depends on the application of interest and
on the available computational power.

Although the environment is important to obtain a realistic representation of the experimental settings, treating the
core region with an accurate level of theory is fundamental for reliable simulations. In this respect, coupled cluster
(CC) theory plays a leading role in quantum chemistry for the study of molecular ground and excited states as well as
response properties.7,8 The appeal of the theory is that, in principle, the exact form of the wave function is known
(within the nonrelativistic, Born–Oppenheimer framework). Although evaluating the exact wave function and energy is
practically seldom possible, there is a well defined way to write approximate versions of the theory, and a clear path to
systematically improve the description of the system. This is contrary to modern density functional theory (DFT), where
the form of the exact functional is not known, and progress towards the exact density representation is not straightfor-
ward. In practice, DFT still constitutes the workhorse of quantum chemistry simulations, but CC methods are used
when a high level of accuracy and reliability is necessary. Therefore, extending the ability of CC methods to include the
effect of the environment is highly desirable.

The combination of electron correlation methods with continuum models dates back to the early 1990s, with the
work of Olivares del Valle and Tomasi on perturbation theory (PT) and the polarizable continuum model of solvation
(PCM).4,5,9,10 In these papers, the solvent response was included explicitly in the reference Hartree–Fock
(HF) equations as well as in the PT equations. Therefore, the solvation scheme was called PT energy and density
(PTED), since it involved the correlation density. The approximation where the solvent response was only included in
the HF equations was called PTE, as the correlation density is not necessary. The PTED scheme requires a PCM macro-
iteration procedure to reach mutual polarization between the solute and the solvent. Thus, it is considerably more
computationally demanding than the corresponding in vacuo PT and PCM-PTE approaches, which do not require the
correlation density and the macro-iteration procedure. We will use the PTED and PTE designation also for the combi-
nation of CC theory and PCM, because the basic derivation is similar.

The first implementation of CC theory with a continuum solvation model was presented by Christiansen and
Mikkelsen (CM).11,12 Although their solvation model was not as flexible and elaborate as PCM, the theory for the inter-
facing with CC methods is essentially the same as the PTED scheme. The main difference of the CM approach com-
pared to the initial PTED scheme in References 9, 10 is that in the former the HF calculation is performed in vacuo,
and the solute-solvent interaction is accounted for entirely in the CC equations. This choice has two disadvantages in
practical calculations with truncated CC wave functions: (a) most of the solvent response is due to the polarization of
the HF orbitals, which cannot be recovered by the CC single excitation amplitudes alone, (b) the PTE approximation
cannot be invoked. Nevertheless, CM also developed the theory for electronic excitations and response properties
through response theory, which extended the use of the method to study photochemistry and other interactions with
external fields.11–13 Later on, this theoretical framework was utilized by Kongsted and coworkers to combine CC theory
with a polarizable force field based on an induced multipole model.14–25 The theory for the combination of CC methods
and PCM with the PTED and PTE schemes was presented by Cammi, who described the extension to excited state
phenomena using the linear response (LR) formalism as well as the state specific formalism (SS).26–28 Cammi also col-
laborated with Ehara and co-workers to combine PCM with the symmetry adapted cluster-configuration interaction
(SAC-CI) method,29–33 which is closely related to CC theory. It is also important to mention the combination of CC
methods with other embedding schemes, albeit only at the PTE level.34–41

Our contributions to this field come from the first implementation of the PCM-PTED scheme with CC with single
and double excitations (CCSD-PCM-PTED) for ground and excited state properties, and from the definition of a new
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coupling scheme, intermediate between PTED and PTE, to maintain the cost of CC-PCM calculations virtually identical
to that of in vacuo CC.42–54 In fact, the main scope of this review is to discuss this new scheme, which we call “singles-
T density” approximation for the correlation solvent response, or PTES. The PTES scheme includes the correlation sol-
vent response explicitly, which is fundamental for a qualitatively correct description of the process of interest, but it
avoids the PCM macro-iteration procedure that makes the PTED scheme so computationally demanding. The expres-
sion “singles-T” approximation for the environment is used because the ground state solvent response can be evaluated
by using just the CC single excitation amplitudes. However, it is important to emphasize that “singles” here is not
related to the level of truncation of the CC expansion. Indeed, we discuss the equations in a general form, without
invoking any truncation of the CC wave function ansatz, even if in practice we implemented the method for CCSD-
PCM. This body of work includes ground and excited state energy and energy gradients with the SS and LR
formalisms.44–50,52,54 Additionally, we discuss how this theoretical framework can be extended to polarizable MM force
fields with minimal effort.53

The review is organized as follows: Section 2 presents in detail the theory for ground and excited state CC-PCM-
PTES, and how the same theoretical framework can be easily extended to polarizable MM force fields; Section 3
describes a series of applications of the CCSD-PCM schemes, and compares the accuracy with respect to experiment,
and the computational cost with respect to in vacuo CC; finally, Section 4 contains an overall discussion and concluding
remarks.

2 | THEORY

In this section, we present a review of the theory and of the implementation details for the CCSD-PCM-PTES method
for ground and excited states. However, it is useful to introduce first the notation that we will utilize for the remaining
of the paper. The coupled cluster ground state excitation operators T̂ , and the auxiliary deexcitation operators Λ̂ , are
defined as7,8:

T̂ =
XNel

n=1

T̂n =
XNel

n=1

tnτ̂n

Λ̂=
XNel

n=1

Λ̂n =
XNel

n=1

λnτ̂
†
n

ð1Þ

where Nel is the number of electrons, and τ̂n is an elementary excitation operator; n collectively represents the level of
excitation/deexcitation, for example, τ̂1 indicates all one-electron excitations from the reference wave function Φ0:

τ̂1 jΦ0〉= jΦ1〉: ð2Þ

Similarly, τ̂†n is an elementary deexcitation operator. The amplitudes tn (and λn) indicate the weight of any particular
excitation in the CC exponential ansatz:

jΦCC
0 〉= eT̂ jΦ0〉 ð3Þ

In Equation 3 and in the following, we use the n numerical superscript to indicate n-th excited Slater determinants,
and a numerical subscript to index the electronic state. It is also convenient to introduce a short-hand notation for
normal-ordered, similarity transformed operators7,8:

!XN = e− T̂ X̂eT̂−〈X0〉 ð4Þ

where the last term on the right-hand side is the expectation value of the operator X̂ computed with the reference wave
function. When convenient, we will also use the following short-hand notation for the bra function:
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〈Λ j = 〈Φ0 j 1̂ + Λ̂
! "

ð5Þ

where 1̂ is a unit operator that leaves the function unchanged. Note that the deexcitation operator Λ̂ performs as an
excitation operator when it operates on the left.

The PCM charges Q are computed by solving a linear system of the form4,5:

Y Rcavf g,εð ÞQ γð Þ= −V γð Þ ð6Þ

where Y({Rcav}, ε) is the PCM interaction matrix, whose specific form changes with the flavor of PCM, but that in gen-
eral depends on the shape of the solute cavity (determined by the atom-centered cavity radii {Rcav}) and the dielectric
permittivity ε. The term V(γ) on the right-hand side is the electrostatic potential generated by the solute nuclei and elec-
trons on the cavity surface. Thus, both V and Q depend explicitly on the solute one-particle electron density γ. The
expression in Equation 6 already assumes that the integration over the cavity surface is performed approximately as a
sum over finite elements. The various formulations of the PCM equations, and of the cavity shape and its discretization
are discussed in detail elsewhere.4,5,55 A key point for the following discussion is that we assume that the matrix Y
({Rcav}, ε) is symmetric, which limits the current implementation of CC-PCM methods to the conductor-like formula-
tion (CPCM)56,57 and the symmetric version of the integral equation formalism PCM (IEFPCM).58

2.1 | Ground state

The electronic energy expression for the solute in the CC-PCM-PTED method can be expressed in terms of a
Lagrangian26:

G0 = 〈Λ !Hj jΦ0〉+
1
2
〈Λ !V#Q0 γCC

! "## ##Φ0〉

= 〈Λ !Hj jΦ0〉+
1
2
V0 γCC

! "
#Q0 γCC

! " ð7Þ

where !H is the similarity transformed molecular Hamiltonian (see Equation 4) and γCC is the total CC density:

γCC = γ0 + γ ð8Þ

where γ0 is the reference density and γ is the CC reduced (or correlation) density. As we shall see below, the amplitudes
for the deexcitation operator Λ̂ play the role of Lagrange multipliers for the T̂ amplitude equations. The last term on the
right-hand side of Equation 7 is the solute-solvent interaction energy, and the factor of 1/2 accounts for the work to polarize
the dielectric. Thus, the energy G0 takes the form of a free energy because the averaging of the solvent degrees of freedom
is accounted for implicitly in the dielectric permittivity, used to obtain the PCM charges Q(γCC) through Equation 6.4,59 The
energy in Equation 7 can be separated in a reference and a correlation contribution, as for in vacuo CC:

G0 =G0 + 〈Λ !HPCM
N

###
###Φ0〉+

1
2
VN #QN ð9Þ

where G0 is the reference energy, including the reference PCM charges:

G0 = 〈Φ0 Ĥ
## ##Φ0〉+

1
2
〈Φ0 V̂#Q0

## ##Φ0〉 ð10Þ

and !HPCM
N is

!HPCM
N = !HN + !VN #Q0 ð11Þ
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where we have written the PCM operator explicitly only for clarity; in practice, the solvent term in Equation 11 is
included in the one-electron part of the normal-ordered Hamiltonian, that is, the molecular orbital (MO) energies when
the canonical HF wave function is used as reference. Therefore, the solvent operator in Equation 11 does not generate
any new term in the CC equations. In Equation 9, the correlation solute-solvent interaction energy only depends on the
CC reduced one-particle density matrix (1PDM). From the computational cost standpoint, the solution of the reference
equations in solution (called self-consistent reaction field equations, SCRF)4 is about 20% more demanding than the in
vacuo self-consistent field (SCF) equations. However, this extra effort is negligible compared to that for the solution of
the CC equations, irrespective of the solvation scheme.

The PTED expression in Equation 7 has the disadvantage that the energy is quadratic in the CC density through the
solvent term, which in turn means that the energy expression is quadratic in the Λ̂ amplitudes. This implies that the
evaluation of the CC-PCM-PTED energy requires the evaluation of both the T̂ and Λ̂ amplitudes, thus the two sets of
equations to determine these amplitudes become coupled. This is different from the in vacuo case, where the energy is
linear in Λ̂, and these amplitudes are not necessary to obtain the energy. In our experience, the coupling of the T̂ and Λ̂
equations effectively makes the CC-PCM-PTED method 3–5 times more expensive the in vacuo CC, because both sets
of equations must be solved iteratively until mutual polarization between solute and solvent is achieved.42 The situation
is even worse for excited states in the state-specific (SS) solvation formalism, because in the PTED scheme the ground
and excited state amplitudes are all coupled.27,46 This makes the calculations in solution significantly more computa-
tionally expensive than in vacuo.

Therefore, we suggested an approximation for the solute-solvent interaction energy that can eliminate this problem
while preserving accuracy quantitatively.44 This approximation is based on neglecting the interaction energy term that
is quadratic in the Λ̂ amplitudes. Expanding the interaction energy:

VN #QN = 〈Φ0 !VNj jΦ0〉#〈Φ0 !QNj jΦ0〉+2〈Φ0 Λ̂!VN
## ##Φ0〉#〈Φ0 !QNj jΦ0〉

+ 〈Φ0 Λ̂!VN
## ##Φ0〉#〈Φ0 Λ̂!QN

## ##Φ0〉

= VT
N #Q

T
N +2VΛ

N #Q
T
N +VΛ

N #Q
Λ
N

ð12Þ

where we have used the symmetry of the PCM Y matrix to collect the terms linear in Λ̂, and we have defined a short-
hand notation to distinguish the terms that depend on Λ̂ from those that depend only on T̂ (the former always depend
on T̂ through the similarity transformation of the operator, but we leave this implicit to simplify the notation). It is only
the last term in Equation 12 that is responsible for the coupling of the T̂ and Λ̂ equations, thus we neglect it to obtain
an energy expression that is linear in Λ̂, as for in vacuo CC. The only PCM charges that survive are the QT

N , which can
be interpreted as the charges generated with the only part of the reduced 1PDM that does not depend on the Λ̂ ampli-
tudes, that is, the single excitation T̂ amplitudes t1. Therefore, we called this approximation PTES, where S stands for
“singles”. The CC-PCM-PTES energy expression is:

GS
0 =G0 + 〈Λ !HPCM

N

###
###Φ0〉+

1
2
VT

N #Q
T
N +VΛ

N #Q
T
N ð13Þ

The evaluation of GS
0 is achieved by minimizing the Lagrangian in Equation 13 with respect to the Λ̂ amplitudes

(λn) while keeping the reference wave function frozen, as for in vacuo CC:

∂GS
0

∂λn
=0= 〈Φn !HPCM

N + !VN #QT
N

###
###Φ0〉 ð14Þ

These are the T̂ equations, which allow one to evaluate the tn amplitudes from Equation 1. Once the tn amplitudes
are computed, Equation 13 can be simplified to:

GS
0 =G0 + 〈Ψ0 !HPCM

N

###
###Φ0〉+

1
2
VT

N #Q
T
N ð15Þ

where the explicit dependence on Λ̂ disappears, as for isolated molecules.44 The T̂ equations for CC-PCM-PTES
are essentially identical to those of in vacuo noncanonical CC, because the explicit correlation solvent term is a
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one-electron operator whose contributions look the same as those of a nondiagonal Fock operator.60 Therefore, the
explicit PCM terms add virtually no extra computational cost, because they can be folded into contractions that are
already necessary in standard CC theory. In our implementation of CCSD-PCM, the cost of evaluating QT

N scales as O
(N3), where N is the size of the basis set, because we need to transform the t1 amplitudes in atomic orbital (AO) basis to
use the standard PCM routines that solve Equation 6. Additionally, in our experience, the iterative procedure to solve
Equation 14 converges in the same number of iterations as for in vacuo calculations. Thus, CC-PCM-PTES is virtually
identical in cost to in vacuo CC. Hence, for the remaining of this work, we will focus the description of the CC-PCM
theory only on the PTES scheme, and we will drop the S superscript in the following equations. We will discuss the
quality of this approximation compared to the PTED scheme with a selection of examples in Section 3.

In order to evaluate molecular properties, analytical gradients of the CC-PCM-PTES energy in Equation 13 are nec-
essary. As in standard CC theory, the gradients of the T̂ amplitudes can be avoided by evaluating the Λ̂ amplitudes first,
so that the energy gradient can be expressed only in terms of the derivative of the MO coefficients, and of the one and
two-electron integrals in AO basis, plus the derivative of the cavity terms.55,60,61 The Λ̂ amplitudes can be obtained by
minimizing the energy in Equation 13 with respect to the tn amplitudes. This leads to a system of linear equations simi-
lar to that for isolated molecules:

∂G0

∂tn
=0= 〈Λ !HPCM

N + !VN #QT
N , τ̂n

h i###
###Φ0〉+ 〈Φ0 !VN #QΛ

N

## ##Φn〉 ð16Þ

where, as for the T̂ equations, the PCM terms are identical in form to one-electron operators with noncanonical
orbitals; therefore, they do not add any computational cost to the equations, and they are rather easy to implement. In
Equation 16, the QT

N charges are fixed, as they are computed with the converged T̂ amplitudes. However, the QΛ
N char-

ges need to be updated together with the Λ̂ amplitudes (although this is a system of linear equations, it is usually solved
with iterative techniques due to the size of the matrices involved). The computational cost of evaluating the QΛ

N charges
scales as O(N5), as that is the cost to evaluate the reduced 1PDM. Considering that the scaling of CCSD is O(N6), the
added effort required to compute QΛ

N is negligible. Once the T̂ and Λ̂ amplitudes are evaluated, the same procedure used
for in vacuo CC can be followed to obtain the derivative of the MO coefficients.60,61 The derivation is rather lengthy,
and we only report the terms due to the solvent that need to be added to the standard equations. The evaluation of the
MO coefficient derivative requires the solution of the coupled perturbed HF (CPHF) equations,62,63 a system of linear
equations where the constant term is built with the proper combination of the reduced one and two-particle density
matrices (1 and 2PDM).60,61 Following the notation in References 26, 42, 44, the additional terms to the CPHF constant
term are

Ikm = − γkq + γqk
$ %

Vqm #QN + γΛkq + γΛqk
$ %

Vqm #QΛ
N

Iea = − γeq + γqe
$ %

Vqa #QN + γΛeq + γΛqe
$ %

Vqa #QΛ
N

Iem = − γeq + γqe
$ %

Vqm #QN + γΛeq + γΛqe
$ %

Vqm #QΛ
N

Ime = γmq + γqm
$ %

Vqe #QT
N − γΛmq + γΛqm

$ %
Vqe #QΛ

N

ð17Þ

where Vpq is the matrix representation of the electrostatic potential operator in MO basis, γpq is the reduced 1PDM, see
Equation 8, and γΛpq = γpq− tckδkpδcq; the indexes k, m refer to occupied MOs, a, e to unoccupied MOs, and p, q to generic
MOs. These expressions are slightly different than those presented in the original PTES paper,44 where they were
derived directly from the PCM-PTES energy in Equation 13. On the other hand, the expressions in Equation 17 reflect
our implementation in the GAUSSIAN software,64,65 and are based on the PCM-PTES energy written as the combina-
tion of terms quadratic in some density.

1
2
VT

N #Q
T
N +VΛ

N #Q
T
N =

1
2
VN #QN −

1
2
VΛ

N #Q
Λ
N ð18Þ

Including the terms in Equation 17 in the CPHF equations allows one to obtain the PCM contribution to the MO
derivatives. The computational cost of these PCM terms is negligible due to their O(N3) scaling. To complete the
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derivative of the CC-PCM-PTES energy, the derivative of the electrostatic potential integrals and of the cavity terms
must be added to the gradient55:

1
2
VN #QN −

1
2
VΛ

N #Q
Λ
N

& ' x½ %
= γpqV

x½ %
pq#QN +

1
2
γpqVpq#Y x½ %#γrsVrs

−γ0pqV
x½ %
pq#QN −

1
2
γ0pqVpq#Y x½ %#γ0rsVrs

ð19Þ

where we have used again the symmetry of the PCM Y matrix. These derivative terms are essentially the same as those
for time-dependent density functional theory (TDDFT) gradients in the presence of the solvent,66 and the same routines
can be utilized by using the CC 1PDM rather than the TDDFT 1PDM. Overall, the cost of adding the solvent to the CC
equations is virtually negligible, as the extra terms are inexpensive to compute, and they do not significantly alter the in
vacuo CC equations.

2.2 | Excited states

The theory of excited states for solvated molecules in hybrid methods follows two formalisms: the state specific (SS) and
the linear response (LR).67,68 The former is akin to the equation of motion CC (EOM-CC) formalism,69 while the latter
to the LR-CC formalism.13,70 However, although in vacuo EOM-CC and LR-CC converge to the same equations for the
excitation energies (albeit they still differ in the expressions for transition properties),71,72 the inclusion of the solvent
leads to two separate sets of equations, and to different values of the transition energy. The origin of the two formalisms
has been discussed elsewhere,67,68 and their main features can be summarized by saying that in the SS scheme the sol-
vent responds to the excited state density of the solute, while in the LR scheme the solvent responds to the transition
density between the ground and the excited state. Another complication with implicit solvation models such as PCM is
the distinction between equilibrium and nonequilibrium regimes.4 In a vertical excitation, the solvent molecules do not
move fast enough to respond to the sudden change in the solute electron density, and the solvent polarization is only
determined by the response of its electrons. This creates a nonequilibrium regime for the solute-solvent interaction. In
continuum models, the difference in response time is modeled by separating the solvent polarization in two compo-
nents: an inertial polarization that mimics the frozen position of the solvent molecules in equilibrium with the ground
state solute density, and a dynamic polarization that mimics the response of the solvent electrons.4 The latter is com-
puted with the same PCM equation (see Equation 6), but with the static dielectric constant ε0 replaced by the optical
dielectric constant ε∞ = n2, where n is the refractive index of the medium. ε∞ represents the high-frequency limit of the
dielectric permittivity, ε∞ = ε(ω ! ∞), and corresponds to an “instantaneous” response of the solvent electrons. This
approximation is usually reasonable for describing the electrostatic polarization in vertical transitions, and ε∞ is known
for many solvents, so that PCM can be easily used to simulate a large number of experimental situations. When enough
time is passed, of the order of the internal relaxation of the solute after a vertical excitation, the solute and solvent have
enough time to mutually polarize, that is, the system relaxes to an equilibrium solvation regime, and the PCM equa-
tions can be solved again with ε0. This is relevant when one is interested in finding the stationary points on the excited
state potential energy surface (PES) of the solvated molecule. We developed the theory and implemented the computer
code for the PTES approximation with the SS and LR formalisms in the equilibrium and nonequilibrium solvation
regimes, including analytic gradients of the energy.45,46,52,54 We will now discuss the main expressions for this series of
approaches.

2.2.1 | State specific formalism

The CC-PCM-PTES method for excited states with the SS solvation formalism follows the EOM-CC theory for isolated
molecules.69 However, it is convenient to express the in vacuo energy for the K excited state in terms of a
Lagrangian46,73:

EK =E0 + 〈ΛK !HNj jΦ0〉+ 〈Φ0 L̂K !HN , R̂K
( )## ##Φ0〉+ωK 1−〈Φ0 L̂K R̂K

## ##Φ0〉
! "

ð20Þ
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where L̂K and R̂K are the Kth left and right-hand eigenvectors of !HN with eigenvalue ωK, and Λ̂ k is the equivalent of
the ground state Λ̂ operator. The last term on the right-hand side imposes the biorthonormality condition for the
eigenstates of !HN , which is non-Hermitian due to the similarity transformation.69 In Equation 20, the T̂ equations are
obtained by minimizing EK with respect to the Λ̂ k amplitudes, and they are decoupled from any other amplitude equa-
tion. Once the T̂ amplitudes are evaluated, one can diagonalize !HN from the right or from the left-hand sides, indepen-
dently, to find the excitation energies ωK and the related eigenvectors. In terms of the Lagrangian, the right-hand
eigenvalue equation is obtained by minimization of EK with respect to the L̂K amplitudes, and vice versa. Finally, if one
is interested in excited state properties or in the EK gradients, the Λ̂ k amplitudes must be evaluated by minimizing EK

with respect to the T̂ amplitudes. A key point is that, in vacuo, all of these amplitude equations are decoupled from
each other.

In the PTED-SS formalism, we can write a Lagrangian expression similar to that in Equation 20, but the full PCM
energy couples the T̂ , Λ̂ k, R̂K , and L̂K amplitude equations because the solvent term is quadratic in the excited state
density46:

1
2
VKN #QKN =

1
2
VK

N #Q
K
N +VK

N #Q
T
N +

1
2
VT

N #Q
T
N

+VΛ
N #Q

T
N +

1
2
VΛ

N #Q
Λ
N +VΛ

N #Q
K
N

ð21Þ

where

QKN = 〈Φ0 !QNj jΦ0〉+ 〈Φ0 Λ̂K !QN

## ##Φ0〉+ 〈Φ0 L̂K !QN , R̂K
( )## ##Φ0〉

= QT
N +QΛK

N +QK
N

ð22Þ

and similarly for VKN. The coupling of all of the amplitude equations clearly increases the computational cost dramati-
cally compared to the in vacuo case. Additionally, since the T̂ equations must be solved in the presence of the excited
state charges QKN, T̂ loses the meaning of ground state operator, and its amplitudes are just parameters of the excited
state wave function.

In the PTES approximation, this coupling is eliminated by neglecting the last two terms on the right-hand side of
Equation 21.46 The energy Lagrangian in solution is:

GK = G0 + 〈ΛK !HPCM
N

###
###Φ0〉+ 〈Φ0 L̂K !HPCM

N , R̂K

h i###
###Φ0〉

+ωK 1−〈Φ0 L̂KR̂K
## ##Φ0〉

! "
+
1
2
VTK

N #QTK
N +VΛK

N #QT
N

ð23Þ

where QTK
N =QT

N +QK
N . Minimizing GK with respect to the Λ̂ k amplitudes, we obtain the T̂ amplitudes equations in

Equation 14. Minimization with respect to the L̂K amplitudes leads to the R̂K equations, and vice versa:

∂GK

∂lK ,n
= 〈Φn !HPCM

N + !VN #QTK
N , R̂K

h i###
###Φ0〉−ωK〈Φn R̂K

## ##Φ0〉=0 ð24Þ

∂GK

∂rK ,n
= 〈Φ0 L̂K !HPCM

N + !VN #QTK
N , τ̂n

h i###
###Φ0〉−ωK〈Φ0 L̂K

## ##Φn〉=0 ð25Þ

These expressions are in the form of a non-Hermitian eigenvalue problem, and can be solved with iterative algo-
rithms to extract the lowest few eigenvectors. Although the T̂ equations are decoupled from the rest, the solvent energy
couples the L̂K and R̂K equations through the QK

N charges. The computational cost of the PCM terms is still negligible
compared to the standard EOM-CC terms, as the most expensive part scales as O(N5), i.e., the evaluation of the partial
excited state reduced 1PDM:
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γKpq = 〈Φ0 L̂K p†q
* +

, R̂K
( )## ##Φ0〉 ð26Þ

where we have used a second quantization notation for the creation and annihilation operators, and curly brackets rep-
resent normal ordering. The density in Equation 26 is used to compute the QK

N charges through the PCM equation (see
Equation 6). The evaluation of these three sets of amplitudes (T̂ , L̂K , and R̂K ) is sufficient to obtain the excited state
energy, and Equation 23 simplifies to:

GK =G0 +ωK−
1
2
VK

N #Q
K
N ð27Þ

As mentioned above, vertical excitations require the nonequilibrium regime, for which the energy expression can be
formally written in terms of the ground state dynamic and inertial charges, and the excited state dynamic charge
contributions45:

Gneq
K = G0 + 〈ΛK !HPCM

N

###
###Φ0〉+ 〈Φ0 L̂K !HPCM

N , R̂K

h i###
###Φ0〉+ωK 1−〈Φ0 L̂KR̂K

## ##Φ0〉
! "

+
1
2
VTK

N #QTK,dyn
N +VΛ

N #Q
T,dyn
N +VKN #QT,in

N −
1
2
VT

N #Q
T,in
N

ð28Þ

where QTK,dyn
N =QT

N +QK,dyn
N , and the charges QK,dyn

N are computed using the same density in Equation 26, but with the
optical dielectric constant ε∞ in the PCM equations, see Equation 6. Minimization of Gneq

K with respect to the Λ̂ k ampli-
tudes leads again to Equation 14 for the T̂ amplitudes. The left and right-hand eigenvectors are computed through
expressions similar to those in Equations 24–25 with the substitution QTK

N !QTK ,dyn
N . Therefore, the same code that

computes the equilibrium excited state energy can be used to evaluate the nonequilibrium energy. Finally, at conver-
gence, the nonequilibrium energy is simply:

Gneq
K =G0 +ωK−

1
2
VK

N #Q
K ,dyn
N ð29Þ

Thus, both in the equilibrium and nonequilibrium regimes, the evaluation of the energy does not require the Λ̂ k
amplitudes. However, the latter are necessary to perform geometry optimization on the excited state PES, which require
the gradient of GK in Equation 23. The Λ̂ k equations are obtained by minimizing GK with respect to the T̂ amplitudes:

∂GK

∂tn
=0= 〈Λ !HPCM

N + !VN #QT
N , τ̂n

h i###
###Φ0〉+ 〈Φ0 !VN #QΛK

N

## ##Φn〉

〈Φ0 L̂K !HPCM
N + !VN #QTK

N , R̂K

h i
, τ̂n

h i###
###Φ0〉

ð30Þ

where QΛK
N =QΛ

N +QK
N . This expression is similar to that for the ground state Λ̂ amplitudes, see Equation 16, except for

the extra constant term with the nested double commutator. Equation 30 is also similar to the excited state Λ̂ k equation
for in vacuo CC, with a few extra PCM terms.73 The QTK

N contribution in the double commutator constant term can be
easily folded in contractions already necessary in the in vacuo CC equations, therefore it does not increase the compu-
tational cost. As for the ground state, the only charges that need to be updated during the iterative procedure to solve
Equation 30 are the QΛ

N charges, and the same computational considerations apply here as well. Once again, PCM also
adds a series of contributions to the constant term of the CPHF equations to evaluate the derivative of the MO coeffi-
cients, and some direct contributions to the gradient for the derivative of the electrostatic potential integrals and the
PCM matrix.46 All of these contributions are easy to derive and implement, if the PCM-PTES-SS energy is written as:

1
2
VTK

N #QTK
N +VΛ

N #Q
T
N =

1
2
VKN #QKN +

1
2
VK

N #Q
K
N −

1
2
VΛK

N #QΛK
N ð31Þ

i.e., as a combination of terms quadratic in some density. In this way, the extension of Equations 17 and 19 to the
excited state case is straightforward.46
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Once the minimum energy geometry in the excited state PES is determined, a vertical emission energy can be com-
puted to compare with fluorescence spectra. As in absorption, a nonequilibrium regime is established also in emission.
This requires the evaluation and storage of the inertial excited state charges:

QK,in = Q0 +QTK
N

! "in ð32Þ

which are obtained from the difference between the total and dynamic charges: Qin = Q − Qdyn, and the latter are computed
with Equation 6 by using ε∞. Then, a ground state nonequilibrium calculation is performed in the presence of the non-
equilibrium charges. This requires two steps. First, a nonequilibrium reference calculation provides the reference energy:

G0,neq = 〈Φ0 Ĥ
## ##Φ0〉+

1
2
V0#Q0,dyn +V0#QK,in−

1
2
VK #Q0,in ð33Þ

where VK =V0 +VTK
N . Second, the CC nonequilibrium energy is obtained by minimizing the following Lagrangian with

respect to the Λ̂ amplitudes:

Gneq
0 =G0,neq + 〈Λ !HPCM,neq

N

###
###Φ0〉+

1
2
VT

N #Q
T,dyn
N +VΛ

N #Q
T,dyn
N ð34Þ

where

!HPCM,neq
N = !HN + !VN # Q0,dyn +QK ,in! "

ð35Þ

The expression in Equation 34 is essentially identical to that for the equilibrium case, see Equation 13, except for
the values of the orbital energies and MO coefficients, and for the fact that the correlation charges QT

N are computed
with ε∞ rather than ε0. Therefore, the same computer code can be straightforwardly reused, and the same consider-
ations about computational cost apply.45

In summary, excited state solvation with the SS formalism is similar to the in vacuo case, but with a few important
differences. One needs to decide first whether the calculation needs to be performed in the equilibrium or non-
equilibrium regimes. The equations in the two cases are very similar, but the solvent response can be very different for
polar solvents due to the difference in magnitude between ε0 and ε∞. The explicit PCM terms, both in the energy,
amplitude, and gradient expressions are similar to those of a one-electron operator in a noncanonical MO basis. Thus,
they do not directly lead to an increase in computational cost. However, in the SS formalism, the solvent energy couples
the L̂K and R̂K amplitude equations, Equations 24–25, because of the QK

N charges. These two sets of equations must be
solved simultaneously until mutual polarization between the solute and the solvent is achieved, which can take several
PCM macro-iterations if the solute excited state density is very different from the ground state density. Different SS
equations must be solved for different excited states, contrary to the case of an isolated molecule, where multiple excita-
tion energies can be computed simultaneously through the partial diagonalization of !HN . Nonetheless, this extra cost is
still small compared to the full PTED-SS scheme, where all sets of CC amplitudes are coupled (T̂, Λ̂ k, R̂K , and L̂K). Fur-
thermore, the PTES scheme allows one to evaluate transition properties within the EOM-CC approach,69 because the
ground state is orthogonal to the Kth excited state, while this is not the case in the PTED scheme (however, in neither
approach excited states are orthogonal to each other, because they are evaluated with state-specific charges). In this
respect, the PTES approximation is better defined than the PTED scheme thanks to the decoupling of the ground state
T̂ amplitudes from the excited state equations, as for in vacuo EOM-CC. The PTES-SS scheme can be considered the
CC equivalent of the vertical excitation model (VEM) developed in the contest of TDDFT-PCM.74

2.2.2 | Linear response formalism

In the LR formalism, the excitation energies are obtained as the poles of the LR function of the electronic ground state
in the presence of an external field.13 These poles are obtained by diagonalizing the Jacobian matrix, that is, the mixed-
energy second derivative matrix52:

10 of 27 CARICATO



∂2G0

∂tn∂λm
= 〈Φm !HPCM

N + !VN #QT
N , τ̂n

h i###
###Φ0〉+ 〈Φm !VNj jΦ0〉#〈Φ0 !QN , τ̂n½ %j jΦ0〉 ð36Þ

Since the Jacobian matrix in Equation 36 is not Hermitian, it has different left (L̂K ) and right-hand (R̂K ) eigenvec-
tors, related by biorthogonality. The eigenvalue equations for the two sets of eigenvectors are:

〈Φn !HPCM
0N + !VN #QT

N , R̂K

h i###
###Φ0〉+ 〈Φn !VN #QRK

N

## ##Φ0〉=ωK〈Φn R̂K
## ##Φ0〉 ð37Þ

〈Φ0 L̂K !HPCM
0N + !VN #QT

N , τ̂n
h i###

###Φ0〉+ 〈Φ0 !VN #QLK
N , τ̂n

( )## ##Φ0〉=ωK〈Φ0 L̂K
## ##Φn〉 ð38Þ

where in both cases, ωK is the excitation energy, and the transition charges are:

QRK
N = 〈Φ0 !QN , R̂K

( )## ##Φ0〉

QLK
N = 〈Φ0 L̂K !QN

## ##Φ0〉
ð39Þ

Note that the right-hand charges QRK
N are different between the PTES and PTED schemes, because in the latter the

bra is 〈Λj.49,52 More importantly, in the PTED method, the quadratic form of the solvent energy (see Equation 9), couples
the equations for the response of the T̂ and Λ̂ amplitudes. This is usually avoided by neglecting this coupling in the
response equations, which leads to a somewhat inconsistent treatment of the energy and linear response function.12,28

On the other hand, the T̂ and Λ̂ equations are decoupled from the very beginning in the PTES scheme, see Equation 13,
and there is no inconsistency with the LR function. In terms of computational cost, the evaluation of the QRK

N and QLK
N

charges in Equation 39 scales as O(N5), due to the scaling of the evaluation of the transition density. The cost of the
explicit PCM terms in Equations 37–38 is again negligible, as these are one-electron operators than can be folded into
intermediates already necessary for the standard LR-CC calculation. An advantage of the LR formalism over the SS one
is that, since the response charges depend on the transition rather than the state density, multiple states can be treated
simultaneously as for isolated molecules. Therefore, the computational cost of the CC-PCM-PTES-LR scheme is virtually
the same as that of in vacuo LR-CC.

Contrary to the SS case, where transition properties are computed with a frozen-T̂ approximation,69 in LR these
properties are evaluated from the residues of the linear response function, which do take into account the response of
the T̂ amplitudes.71,72 This response is obtained by defining a new deexcitation operator M̂K , whose amplitudes are
obtained by solving a linear system of equations similar to that for the Λ̂ amplitudes52:

〈Λ !HPCM
N + !VN #QT

N , R̂K

h i
, τ̂n

h i###
###Φ0〉

+ 〈Φ0 !VN #QΛ−RK
N , τ̂n

( )## ##Φ0〉+ 〈Λ !VN #QRK
N , τ̂n

( )## ##Φ0〉

+ 〈Φ0 M̂K !HPCM
N + !VN #QT

N , τ̂n
h i###

###Φ0〉

+ 〈Φ0 !VN #QMK
N , τ̂n

( )## ##Φ0〉+ωK〈Φ0 M̂K
## ##Φn〉=0

ð40Þ

where

QΛ−RK
N = 〈Φ0 Λ !QN , R̂K

( )## ##Φ0〉

QMK
N = 〈Φ0 M̂K !QN

## ##Φ0〉
ð41Þ

The transition moments are evaluated as:

TX
0K = 〈Λ !X , R̂K

( )## ##Φ0〉+ 〈Φ0 M̂K !X
## ##Φ0〉

TX
K0 = 〈Φ0 L̂K !X

## ##Φ0〉
ð42Þ
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which are then combined to compute the transition property of interest

SXY0K =
1
2

TX
0KT

Y
K0 +TY

0KT
X
K0

! "
ð43Þ

where X and Y are particular perturbations; for instance, if X = Y = μ, where μ is the electric dipole, then SXY0K is the
dipole strength between the ground state and the Kth excited state.12,28 The expression in Equation 40 has many ele-
ments in common with that for Λ̂ k in Equation 30, as for in vacuo LR-CC, although the PCM charges are computed
with different density matrices. In Equation 40, the only charges that change during the iterative solution are QMK

N ,
while the others are fixed. As for the other sets of equations, the scaling of the PCM contributions is of the order of O
(N5) for the evaluation of the density corresponding to the QMK

N charges. Transition properties computed as residues of
the linear response function require the solution of one set of M̂K linear equations (Equation 40) for each excited state,
as in in vacuo LR-CC.13,70,71,73 Since the scaling of these equations is O(N6), the added computational effort is consider-
able, and a more efficient alternative is to revert to the approximate EOM-CC approach.69,72 Nonequilibrium vertical
excitation calculations are easily performed in the LR formalism, by evaluating the excited state charges in Equa-
tions 39 and 41 with the optical dielectric constant ε∞ instead of the static constant ε0.

The excited state energy with the LR formalism is:

GK =G0 +ωK ð44Þ

which is different than the SS energy in Equation 27, or in Equation 29 for the nonequilibrium case, because the LR for-
malism does not include the full mutual polarization between the excited solute and the solvent. However, the low
computational cost of the LR formalism makes it attractive for the exploration of the excited state PES, which requires
the evaluation of the derivative of the energy with respect to nuclear displacements. It is useful to recast the expression
in Equation 44 in terms of an energy Lagrangian54,73:

GK = G0 + 〈ΛK !HPCM
0N

###
###Φ0〉+

1
2
VT

N #Q
T
N +VΛK

N #QT
N

+ 〈Φ0 L̂K !HPCM
0N + !VN #QT

N , R̂K

h i###
###Φ0〉

+VLK
N #QRK

N +ωK 1−〈Φ0 L̂KR̂K
## ##Φ0〉

! "
ð45Þ

The Λ̂ k amplitudes play again the role of Lagrangian multipliers for the T̂ amplitude equations, such that the mini-
mization of GK in Equation 45 returns Equation 14. Minimization of GK with respect to the L̂K and R̂K amplitudes leads
to the eigenvalue equations for the eigenvectors in Equations 37–38. Minimization of GK with respect to the T̂ ampli-
tudes leads to the Λ̂ k equations54:

∂GK

∂tn
=0= 〈Φ0 !HPCM

N + !VN #QTΛKK
N

###
###Φn〉+ 〈Φ0 Λ̂K , !H

PCM
0N + !VN #QT

N

h i###
###Φn〉

+ 〈Φ0 !HPCM
N + !VN #QT

N

###
###~Φ〉〈~Φ Λ̂K

## ##Φn〉

+ 〈Φ0 L̂K !HPCM
N + !VN #QT

N , R̂K

h i
, τ̂n

h i###
###Φ0〉

+ 〈Φ0 L̂K !VN #QRK
N , τ̂n

( )## ##Φ0〉+ 〈Φ0 !VN #QLK
N , R̂K

( )
, τ̂n

( )## ##Φ0〉

ð46Þ

where QTΛKK
N =QT

N +QΛK
N +QK

N and ~Φ
## 〉〈~Φ j represent a sum over all excited determinants within the chosen truncation

of the cluster amplitudes (e.g., for CCSD the sum is over all singly and doubly excited determinants). As for in vacuo
LR-CC,73 the evaluation of the perturbation-independent Λ̂ k amplitudes avoids the need to evaluate the derivative of
the T̂ amplitudes for each perturbation, such that the GK gradient can be written in terms of the derivative of the inte-
grals in AO basis, of the MO coefficients, and of the PCM cavity. However, while for isolated molecules the Λ̂ k equa-
tions are the same for the EOM-CC and LR-CC formalisms,73 these equations are different for SS and LR solvation,
compare Equations 30 and 46. Specifically, the LR Λ̂ k equations have more terms due to the asymmetric PCM energy
contribution (VLK

N #QRK
N in Equation 45), which leads to the last two terms on the right-hand side of Equation 46. Once
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the Λ̂ k equations are solved, the evaluation of the energy gradients proceeds as for isolated molecules: the 1 and 2PDM
are constructed and assembled for the constant term of the CPHF Equations.60,61 The first three PCM terms in Equa-
tion 45 can be recast in a form quadratic in some density54:

1
2
VT

N #QT
N +VΛK

N #QT
N +VK

N #QT
N

=
1
2
VTΛKK

N #QTΛKK
N −

1
2
VΛKK

N #QΛKK
N

ð47Þ

so that contributions similar to those in Equation 17 need to be computed for the CPHF, and in Equation 19 for the
electrostatic potential and cavity derivatives. The nonsymmetric term, VLK

N #QRK
N , leads to new terms for the CPHF

equations54:

IL=Rij = − γLKtj + γLKjt
$ %

Vit#QRK
N − γRK

tj + γRK
jt

$ %
Vit#QLK

N

IL=Rab = − γLKtb + γLKbt
! "

Vta#QRK
N − γRK

tb + γRK
bt

! "
Vta#QLK

N

IL=Rai = − γLKta + γLKat
! "

Vit#QRK
N − γRK

ta + γRK
at

! "
Vit#QLK

N

IL=Ria = γLKti + γLKit
! "

Vta#QRK
N + γRK

ti + γRK
it

! "
Vta#QLK

N

ð48Þ

and for the direct contributions to the gradient:

VLK
N #QRK

N

! " x½ %
= γLKrs V

x½ %
rs #Q

RK
N + γRK

rs V
x½ %
rs #Q

LK
N + γLKrs Vrs#Y x½ %#VrsγRK

rs ð49Þ

Overall, these additional PCM terms are computationally inexpensive, and they add no detectable cost to the calcu-
lation. Once a minimum energy structure is found on the solute excited state PES, a vertical emission calculation in the
nonequilibrium solvation regime can be evaluated in a similar way as for the SS formalism, see Equations 32–34.

The LR formalism can be also used to evaluate certain molecular properties, such as the electric polarizability or the
specific rotation in chiral compounds.52,75,76 The LR function for the PTES approximation takes the form52:

〈〈X ;Y〉〉ω=
1
2
Ĉ
&ω

P̂ XYð Þ½〈Λ !X , T̂
Y
ω

h i###
###Φ0〉+

1
2
〈Λ !HPCM

0N + !VN #QT
N , T̂

X
−ω

h i
, T̂

Y
ω

h i###
###Φ0〉

+
1
2
VTX

N ,−ω#Q
TY

N ,ω +VΛ−TX

N ,−ω #Q
TY

N ,ω%
ð50Þ

where ω is the frequency of the impinging light, the operator Ĉ
&ω

takes the sum of the entire expression and of its com-
plex conjugate, and the operator P̂ XYð Þ symmetrizes the expression with respect to the interchange of X and Y. The
perturbed T̂ amplitudes are obtained by solving the following linear system of equations:

〈Φn !HPCM
0N + !VN #QT

N , T̂
Y
ω

h i###
###Φ0〉−ω〈Φn T̂

Y
ω

###
###Φ0〉

+ 〈Φn !VN #QTY

N ,ω

###
###Φ0〉= −〈Φn !Yj jΦ0〉

ð51Þ

The charges and electrostatic potential that depend on the perturbed T̂ amplitudes in Equations 50–51 (e.g., QTY

N ,ω )
are computed as the charges QRK

N in Equation 39, but with the perturbed T̂ amplitudes (e.g., T̂
Y
ω).

52 Similarly, VΛ−TX

N ,−ω in
Equation 50 is computed as in Equation 41. If X = Y = μ, the LR function in Equation 50 provides the various
elements of the electric dipole polarizability tensor, while if X = μ and Y = m (where m is the magnetic dipole),
one obtains the elements of the Rosenfeld tensor, whose trace is proportional to the specific rotation.52,75,76 As for
the excitation energies, the perturbed T̂ and Λ̂ amplitudes are automatically decoupled in the PTES approximation,
and the extra PCM terms in Equations 50–51 add negligible computational cost compared to the in vacuo LR-CC
method.
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In summary, the PTES-LR formalism allows one to include explicit solvation effects both in the reference and in the
CC wave function equations without a significant increase in the computational effort. Based on our current experi-
ence, the solvent model does not affect the rate of convergence of the iterative solution of the amplitude equations.
Therefore, ground and excited state as well as response calculations with the LR-CC-PCM-PTES method are virtually
identical in cost to the corresponding in vacuo LR-CC calculations.

2.3 | Polarizable force fields

The theoretical framework developed in the previous sections can also be applied to classical polarizable force fields
(MMPol) where the energy can be expressed in a form quadratic in the QM density. We combined CC methods with
MMPol based on the fluctuating charges (FQ) model48 and the induced dipole (ID) model.53 In the former, each polariz-
able site is endowed with a point charge whose magnitude can vary depending on the mutual polarization with the QM
region and the rest of the environment. This approach is quite similar to PCM, except that the charges are distributed
on actual molecular units rather than on the cavity surface that separates the solute from the continuum dielectric rep-
resenting the solvent. In the FQ model, the charges depend on two empirical parameters, the atomic hardness and elec-
tronegativity, rather than the dielectric constant of the solvent as in PCM.77 The ID model is based on fixed point
charges and induced atomic dipoles on each polarizable site, so that the interaction is with the electric field generated
by the QM region (and the other dipoles) on each individual site.78–80 We are going to use the latter approach to
describe the main concepts and the similarities with the CC-PCM theory.53

The energy of the environment can be written as:

EEnv γ,μ!
$ %

=EMM +EQM=MM γð Þ+EPol γ,μ!
$ %

ð52Þ

where γ is the QM density, and μ! collects the induced dipoles on all polarizable sites. The first two terms on the right-
hand site of Equation 52 are the MM energy and the interaction energy with the QM region for the nonpolarizable part
of the force field, respectively. These two terms do not enter the CC equations because EMM is a classical term like the
nuclear-nuclear repulsion, and EQM/MM(γ) is a fixed one electron term that is included in the Fock matrix like the
electron-nuclear attraction term. The only contribution to EEnv that is relevant for the CC equations is the last one in
Equation 52, the polarization energy:

EPol γ,μ!
$ %

= −μ!# E
!MM

+E
!QM

γð Þ
, -

+
1
2
μ!#T αð Þμ! ð53Þ

where E
!
is the electric field generated by the fixed MM or QM particles on the polarizable sites, and T(α) is the interac-

tion matrix between the induced dipoles. The only parameter that is necessary for the ID model is the isotropic atomic
polarizability for each polarizable site (α), which enters the diagonal elements of the T matrix. Minimizing the polariza-
tion energy with respect to the induced dipole leads to the equation to compute μ!:

∂EPol

∂μ!
=T αð Þμ!−E

!MM
−E

!QM
γð Þ=0 ð54Þ

The expression in Equation 54 is the ID model equivalent of the PCM expression in Equation 6. Substituting Equa-
tion 54 into Equation 53, we obtain:

EPol = −
1
2
μ!# E

!MM
+E

!QM
γð Þ

, -
= −

1
2
μ!#E

!
ð55Þ

The form of the polarization energy in Equation 55 is equivalent to that for PCM in Equation 7. The difference is
that the potential V and the charges Q are vectors of dimension equal to the number of finite elements into which the
PCM cavity is discretized, while the electric field E

!
and dipole μ! are 3×Npol matrices, where Npol is the number of
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polarizable sites. However, the operators corresponding to these energy terms are both one-electron operators, and the
number and location of the charges/induced dipole sites disappears in the contraction of the electrostatic potential with
the charges for PCM, and of the electric field with the induced dipoles in the ID model. In other words, these “environ-
ment” operators have the same functional form in terms of the interfacing with the CC equations. Thus, the entire theo-
retical framework (and corresponding code) derived for CC-PCM can be almost directly transferred to CC-MMpol. The
only main difference between the two theories is that MMPol does not require a different treatment of fast processes,
that is, the nonequilibrium solvation, because in vertical transitions the environment can be kept fixed at the equilib-
rium configuration. Although the equilibrium CC-PCM and CC-MMPol equations are essentially the same for both gro-
und and excited states, it is important to remember that while in PCM the environment reorganization is implicit in
the dielectric constant, in explicit models such reorganization must be obtained through a proper conformation sam-
pling, for example, via a classical molecular dynamics (MD) simulation. Typically, a certain number of snapshots are
extracted from the MD run, the QM-MMPol calculation is repeated for each snapshot, and the results are averaged out.
In the context of CC-MMPol, this means that one needs to perform tens or hundreds of CC calculations, significantly
increasing the computational effort compared to the in vacuo CC and CC-PCM cases. Additionally, if one were to use
the full PTED scheme, this would increase the cost of each CC calculation for each snapshot but a factor of 3–5 (in our
experience). Thus, the PTES approximation for the environment response becomes paramount in order to include the
effect of the embedding explicitly in the CC equations without increasing the cost of each CC calculation compared to
in vacuo CC. Despite the considerable computational cost of CC-MMPol compared to CC-PCM, there are cases where
the former is necessary, for instance when the environment is not homogeneous (e.g., in a biomolecule) or when
explicit solute-solvent interactions are important (e.g., H-bonding). In practice, the choice between implicit and explicit
models depends on the compromise between computational cost and accuracy for a specific application.

3 | NUMERICAL APPLICATIONS

In this section, we present a number of applications of the CCSD-PCM-PTES method based on our implementation in
the GAUSSIAN suite of programs.64,65 These applications offer an initial assessment of the ability of the method to
reproduce the data computed with the complete PTED scheme, and to model experimental data of molecules in solu-
tion, especially for excited states and response properties.

One of the first properties we studied is the solvation free energy for five small organic molecules in a variety of sol-
vents.44 In Table 1, we report the values computed in water for the PTED and PTES schemes and the corresponding
experimental values. These calculations were performed with the 6–31 + G(d,p) basis set, the symmetric version of
IEF-PCM,58 and using UFF radii.82 The geometries were optimized using the corresponding solvation scheme. The data
in the table show that the calculations are in most cases less than 1 kcal/mol away from the experiment (1.4 kcal/mol
for Cl-benzene), while the difference between PTES and PTED is 0.03–0.04 kcal/mol. At the same time, the number of
iterations for the solution of the T̂ amplitudes for CCSD-PCM-PTES is the same as that for the in vacuo calculations,
that is, 16 iterations,44 while for the PTED scheme the convergence of the PCM macroiteration is shown in Figure 1.
The figure indicates that four PCM macro-iterations are necessary to reach an essentially converged value of the energy,
for a total of about 90 iterations (adding the iterations for the T̂ and Λ̂ equations), i.e., about 5 times the number neces-
sary for the PTES scheme.

The PTE scheme, which completely neglects any correlation contribution from the solvent, can be good enough to
describe the ground state of small organic molecules, but we showed that the accuracy of the results deteriorates with
the size of the system.44 This is shown in Figure 2, where we consider a Fe complex used for hydrogen storage, and we
report the solvation free energy in tetrahydrofuran (THF) as a function of the H H bond length. The figure shows that

TABLE 1 Solvation free energy
(kcal/mol) for five organic molecules in
water. Experimental data (Exp) are
taken from Reference 81, the calculated
data are taken from References 42, 44

Exp PTED PTES

Pyridine −4.70 −4.80 −4.77

Aniline −5.49 −5.38 −5.35

Phenol −6.62 −5.85 −5.82

p-Br-phenol −7.13 −6.36 −6.33

Cl-benzene −1.12 −2.57 −2.53
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the PTE scheme misses up to 1.5 kcal/mol in ΔG compared with PTED, while the PTES scheme recovers over 70% of
this difference without increasing the computational cost of the calculation compared to PTE.

In Reference 45, we studied the vertical absorption and emission energies computed with the SS formalism for two
small organic molecules: acrolein and methylcyclopropene (MCP). Experimental data are available for absorption, and
they are reported in Tables 2, 3.

The calculated data used the solvent model with dispersion (SMD),81 which is IEF-PCM for the electrostatic part,
and a series of models for nonelectrostatic interactions. The latter are introduced as classical terms, therefore, they do
not enter the CC equations, but they do affect the optimized molecular geometry (similar to the nuclear-nuclear repul-
sion energy). SMD also has its own set of cavity radii.81 The calculations in solution reproduce the solvatochromic red
and blue shifts of the excitation energies compared to gas phase and between solvents. The absolute errors on the exci-
tation energies tend to be larger in solution than in gas phase, which is not surprising giving the approximate nature of
PCM. Nevertheless, the solvent shift are almost quantitatively reproduced for acrolein; for MCP, half of the shift is
recovered for the first transition, while for the second transition the difference between solvents is small, and a

FIGURE 1 Convergence of the CCSD-PTED-PCM equations
for the calculation of the solvation free energy (kcal/mol) of
pyridine in water. Reproduced with permission from Reference 42.
Copyright 2010 American Chemical Society

FIGURE 2 Solvation free energy (kcal/mol) for the H2[FeH
(PP)2] + complex in THF at various H–H bond distances. R is a
scaling factor from the equilibrium bond distance. Reproduced with
permission from Reference 44. Copyright 2011 AIP Publishing
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continuum model alone is not sufficient to distinguish their effect. In general, PTES performs slightly better than PTED,
probably because in the latter the T̂ amplitudes are computed in the presence of the excited state charges QKN, due to
the coupling of all amplitude equations introduced by the solvent term, see Equation 21. Using the PTE approximation
for vertical absorption energies leads to values that are 0.05–0.13 eV higher than with the PTES scheme for acrolein,
and 0.04–0.32 eV for MCP, worsening the agreement with experiment.45 These differences are even more severe for ver-
tical emission energies, as shown in Tables 4, 5, where the PTED optimized geometry is used to focus on the electronic
effects only.

Although no experimental data are available for a quantitative comparison, the PTED and PTES schemes provide
the same qualitative picture, that is, a negative shift of the emission energy passing from a nonpolar to a polar solvent.
On the other hand, the PTE scheme (referred to as frozen reaction field, FRF, in Reference 45) provides a positive shift.
This is an example of how important solvent effects can be for excited states, such that including them only in the refer-
ence wave function may provide qualitatively incorrect trends.

We also performed a benchmark study of excitation energies for larger systems computed with the PTED-LR
scheme, shown in Figure 3.51 The highlights of that study are that the error of CC-PCM calculations on transition ener-
gies is typically of the order of 0.4–0.5 eV, therefore somewhat larger than for in vacuo calculations.83 This is again to

TABLE 2 Vertical excitation
energies (eV) in gas and in solution
phase for the first two transitions of
acrolein. The solvent shift is the
excitation energy difference between
the polar and nonpolar solvent45

n ! π* A
00

π ! π* A
0

Exp PTED PTES PTE Exp PTED PTES PTE

Gas 3.71 3.88 3.88 3.88 6.41 6.80 6.80 6.80

Cyclohexane 3.71 3.87 3.84 3.93 6.11 6.71 6.69 6.76

Water 3.94 4.05 4.03 4.18 5.90 6.54 6.49 6.56

Solvent shift +0.23 +0.18 +0.19 +0.25 −0.21 −0.17 −0.20 −0.20

TABLE 3 Vertical excitation
energies (eV) in gas and in solution
phase for the first two transitions of
MCP. The solvent shift is the excitation
energy difference between the polar and
nonpolar solvent45

π ! π* B2 π ! π* A1

Exp PTED PTES PTE Exp PTED PTES PTE

Gas 4.48 4.48 4.48 6.15 6.15 6.15

n-pentane 4.01 4.43 4.32 4.62 6.02 6.10 6.09 6.15

Methanol 4.49 4.64 4.57 4.89 5.90 6.10 6.10 6.14

Solvent shift +0.48 +0.21 +0.25 +0.27 −0.12 0.00 +0.01 −0.02

TABLE 5 Vertical emission
energies (eV) in gas and in solution
phase for MCP computed at the PTED
optimized geometry45

π* ! π B

PTED PTES PTE

n-pentane 1.43 1.30 1.64

Methanol 1.09 0.76 2.07

Solvent shift −0.34 −0.54 +0.43

TABLE 4 Vertical emission
energies (eV) in gas and in solution
phase for acrolein computed at the
PTED optimized geometry45

π* ! n A
00

PTED PTES PTE

Cyclohexane 3.17 3.11 3.24

Water 3.02 2.76 3.77

Solvent shift −0.15 −0.35 +0.43
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be expected, as standard PCM does not account for nonelectrostatic effects in the excitation process, and for specific
solute-solvent interactions. However, the study in Reference 51 also showed that the effect of H-bonding, one of the
main issues with PCM, can be recovered at a cheaper level of theory. In particular, we created microsolvated clusters
with a few explicit solvent molecules H-bonded to the solute, and surrounded the cluster with a continuum dielectric.
We showed that an energy correction, computed as the difference between the excitation energy for the micro-solvated
cluster-PCM and for the PCM-only calculations evaluated at TD-DFT level, can substantially improve the agreement of
CC-PCM with experiment. Additionally, this correction is not very sensitive to the choice of approximate density func-
tional, contrary to the actual value of the excitation energy.83 In a follow-up study,52 we performed similar calculations
on the same molecules in Figure 3 with the PTES-LR scheme. The relative error with respect to the PTED scheme for
the transition energy as well as for the oscillator strength computed with the full LR approach (see Equations 40–43)
and with the approximate EOM approach69 (f-si and f-nsi, respectively) are shown in Figure 4. The plots in the figure
show that the PTES and PTED results are essentially identical (the larger error bars for the oscillator strengths are due
to f values that are small in magnitude, which lead to misleadingly large relative errors). However, there is a significant
difference in the computational cost to solve the CC equations for the various sets of amplitudes between the two
schemes, detailed in Table 6. The table shows that the solution of the ground state equations is four times faster with
PTES compared with PTED. On the other hand, the excited state amplitudes require the same computational effort,
because a PTES-type approximation is invoked in the PTED-LR scheme, as discussed in Section 2.2.2.12,28,52 In the same
work, we also computed the specific rotation for three organic molecules. The sign of the specific rotation is directly

FIGURE 3 Test set used for the benchmarking of
LR-CCSD-PCM against experiment. This includes
16 molecules divided in four groups: Nitroso, NQ, AB,
and U, and the solvents in which measurements were
performed. Reproduced with permission from Reference
51. Copyright 2017 American Chemical Society

FIGURE 4 Cumulative, signed relative error (%) of PTES-LR
compared to PTED-LR for the excitation energy (E[ω]), the oscillator
strength with the nonsize intensive (E[f-nsi]) and with the size intensive
approaches (E[f-si]) for the 16 molecules of Reference 51; the label x-y
indicates state y of molecule x (as in Reference 51). Reproduced with
permission from Reference 52. Copyright 2018 AIP Publishing
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related to the absolute configuration of a nonracemic sample of a chiral compound. Therefore, obtaining the correct
sign of this electronic property is essential for a meaningful comparison with experiment. In certain cases, the solvent is
able to change the sign of the specific rotation compared to that of an enantiomer in the gas phase. Thus, taking into
account solvation effects is paramount. Table 7 reports three cases that exemplify the importance of solvation
effects,52,84 where the specific rotation calculated in the gas phase and in solution have the opposite sign (the values
computed with PTED are basically the same as those with PTES, and they are not reported). However, we should cau-
tion that, in most cases, a treatment of the solvation effects based only on a polarizable classical model is likely not
enough to reproduce experimental trends,85 and a QM treatment of the first solvation shell may be necessary.

The implementation of the excited state energy gradients for the PTES-LR scheme at the CCSD level allowed us to
explore the PES of larger systems than possible with the SS approach.54 In particular, we focused on 4-(N,N)-dimethyl-
aminobenzonitrile (DMABN), because this molecule shows dual fluorescence in polar solvents, but not in gas phase
and in nonpolar solvents.86–93 The dual fluorescence derives from a locally excited state (LE), and a twisted intramolec-
ular charge-transfer state (TICT) that is stabilized only in polar solvents, see Figure 5 for a representation of the opti-
mized geometries of the ground state (GS), and of the LE and CT states. The plots of the energies of these three states
(relative to the GS minimum energy in gas phase) are shown in Figures 6–8. The plots in Figure 6 show the correct
order of the states in the gas phase calculations, that is, the LE state is lower in energy than the CT state, in agreement
with the observation that only one emission band is present. However, the data in cyclohexane and acetonitrile show
some of the limitations of the SS and LR formalisms, see Figures 7 and 8. In particular, the LR formalism reproduces
the correct state order in cyclohexane (LE more stable than CT), but not in acetonitrile (LE still more stable than CT).
In contrast, the SS formalism provides the complete opposite prediction: the CT state is more stable than the LE state in
both solvents, where experimentally this is observed only for acetonitrile. The reason why the LR formalism is not able
to stabilize enough the CT state in acetonitrile is that the solvent response can be related to the magnitude of the transi-
tion dipole,67,68 which is small in the twisted structure (see Figure 5) because the conjugation across the entire molecule
is broken. On the other hand, the solvent response in the SS formalism is related to the state dipole, which is large in
the CT state because of the charge separation. However, the SS formalism tends to overestimate this effect, thus stabiliz-
ing the CT state too much in cyclohexane. It was shown that both formalisms account for a particular type of solute-
solvent interaction: the SS formalisms account for the mutual polarization between the molecule and the environment,
while the LR formalism accounts for dispersive interactions.67,68,94 Hence, it has been suggested that two can be com-
bined as90,95:

ΔE=ω0 +ΔΔELR +ΔΔESS ð56Þ

where ω0 is the transition energy computed with the frozen ground state reaction field (Q0 +QT
N ), and

TABLE 7 Specific rotation
(deg dm−1 [g/ml] − 1) for
(1R,3R,5R,7R)-bisnoradamantan-2-one
(1) in ethanol, (1R,5S)-nopinone (2) in
methanol, and (1S,4R)-norbornanone
(3) in chloroform. MVG: Modified
velocity gauge; LG: length gauge52

Exp

MVG LG

Gas PTES Gas PTES

1 −78.4 50.3 −7.7 19.8 −26.0

2 39.9 −8.4 41.4 −8.0 36.4

3 29.8 5.0 4.2 −7.9 1.4

TABLE 6 Total number of
iterations to solve the T̂, Λ̂, R̂K , L̂K , and
M̂K amplitudes equations with
CCSD-PTES-LR for the 16 molecules
from Reference 51. The total sum (Tot)
and the sum without the M̂K iterations
(Tot – NM) are also reported52

PTED PTES

T̂ 1,135 291

Λ̂ 1,118 299

R̂K 984 980

L̂K 674 677

M̂K 412 412

Tot 4,323 2,659

Tot – NM 3,911 2,247
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ΔΔELR = ΔELR−ω0

ΔΔESS = ΔESS−ω0
ð57Þ

where ΔESS/LR are the excitation energies computed with the SS and LR formalisms, respectively, as discussed in Sec-
tions 2.2.1–2.2.2. Vertical excitation energies are reported for DMABN in the two solvents and for the two states in
Tables 8, 9. The results in the tables confirm that CCSD-PCM tends to overestimate the experimental absorption ener-
gies, especially when only the ground state solvation effects are included (ω0 data). The combination of the LR and SS
formalism as in Equation 56 moves the excitation energy closer to the experimental value compared to both
approaches. However, this improvement is rather small in most cases (below 0.1 eV) compared to the difference with
experiment. The state energies at the excited state equilibrium geometries (relative to GS gas phase minimum energy)
are reported in Tables 10, 11. The data in the tables show that the SS-LR combination moves the calculated values in
the right direction, in the sense that it reduces the difference in energy between the LE and CT states, thus reducing the
difference in emission energies computed with the SS approach in Reference 54. However, this approach is still not able
to reproduce the correct energy order in cyclohexane, and the CT state is 0.2 eV lower in energy than the LE state with
the 6–31 + G(d,p) basis set, and 0.1 eV with the aug-cc-pVDZ basis set. Given the decreasing gap with increasing basis
set size, it is possible that the incorrect energy order is due to the limitation in the number of basis functions used in
these calculations.

(a) (b) (c)

FIGURE 5 Optimized geometry of DMABN in the ground state (a), the LE state (b), and the CT state (c) in the gas phase. The
optimized structures in solution are similar. Reproduced with permission from Reference 54. Copyright 2019 Wiley-VCH Verlag GmbH &
Co. KGaA

FIGURE 6 Relative energy (eV) of the GS, LE, and CT electronic states of DMABN at the various optimized geometries in the gas
phase. The reference energy is the minimum GS energy. The x axis reports the electronic state for which the geometry was optimized.
Reproduced with permission from Reference 54. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA
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A final application that we wish to discuss is the comparison of the CCSD-MMPol method with full CCSD for the
calculation of vertical excitation energies in microsolvated clusters.53 We considered three small/medium organic mole-
cules: formaldehyde, acrolein, and diazobenzene surrounded by 2–6 water molecules, or 2 chloroform molecules. These

FIGURE 7 Relative energy (eV) of the GS, LE, and CT electronic states of DMABN at the various optimized geometries in cyclohexane
solution. The reference energy is the minimum GS energy in the gas phase. The x axis reports the electronic state for which the geometry
was optimized. The labels Eq and Neq refer to the equilibrium and nonequilibrium solvation regimes, respectively. All calculations are
performed with the LR formalism except those with the SS label, where ES stands for excited state. Reproduced with permission from
Reference 54. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA

FIGURE 8 Relative energy (eV) of the GS, LE, and CT electronic states of DMABN at the various optimized geometries in acetonitrile
solution. The reference energy is the minimum GS energy in the gas phase. The x axis reports the electronic state for which the geometry
was optimized. The labels Eq and Neq refer to the equilibrium and nonequilibrium solvation regime, respectively. All calculations are
performed with the LR formalism except those with the SS label, where ES stands for excited state. Reproduced with permission from
Reference 54. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA

TABLE 8 Vertical excitation
energies (eV) for DMABN in
cyclohexane

6–31 + G(d,p) Aug-cc-pVDZ

LE CT LE CT

Exp 4.05 4.47 4.05 4.47

ω0 4.63 4.94 4.54 4.82

ΔELR 4.60 4.80 4.51 4.70

ΔESS 4.59 4.87 4.50 4.77

ΔE 4.56 4.73 4.47 4.65
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clusters were small enough to be treatable with the full EOM-CCSD method. We did a thorough test of six basis sets,
two choices of polarizable environment (either with three induced dipoles centered on each atom, or one induced
dipole centered on the oxygen of the water molecule), and a nonpolarizable force field (i.e., only fixed point charges).

TABLE 9 Vertical excitation
energies (eV) for DMABN in
acetonitrile

6–31 + G(d,p) Aug-cc-pVDZ

LE CT LE CT

Exp 3.86 4.21 3.86 4.21

ω0 4.64 4.81 4.55 4.71

ΔELR 4.60 4.68 4.51 4.59

ΔESS 4.60 4.73 4.51 4.65

ΔE 4.56 4.60 4.47 4.53

TABLE 11 State energies (eV) at
the corresponding excited state
equilibrium geometry for DMABN in
acetonitrile. The zero of the energy is
taken at the GS minimum energy in the
gas phase

6–31 + G(d,p) Aug-cc-pVDZ

LE CT LE CT

ω0 3.99 3.83 3.91 3.81

ΔELR 3.61 3.84 3.55 3.82

ΔESS 3.86 3.12 3.79 3.11

ΔE 3.48 3.14 3.43 3.12

TABLE 10 State energies (eV) at
the corresponding excited state
equilibrium geometry for DMABN in
cyclohexane. The zero of the energy is
taken at the GS minimum energy in the
gas phase

6–31 + G(d,p) Aug-cc-pVDZ

LE CT LE CT

ω0 4.10 4.07 3.97 4.05

ΔELR 4.05 4.07 3.92 4.05

ΔESS 4.04 3.78 3.92 3.77

ΔE 3.99 3.79 3.87 3.77

FIGURE 9 Panel a: solvatochromic shifts in the excitation energies of acrolein
with two to six water molecules (N) computed at EOM-CCSD/aug-cc-pVDZ level. Panel
b: corresponding relative errors for the four EOM-CCSD/MMPol1 schemes. For the gas
phase solute ω = 6.8 eV and f = 0.29. Reproduced with permission from Reference 53.
Copyright 2019 American Chemical Society
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The results showed that the aug-cc-pVDZ basis set is a good compromise between computational cost and accuracy,
and that the model with induced dipoles on each atom of the environment is necessary to obtain accurate results. These
trends are exemplified in Figure 9, which shows the change in excitation energy for acrolein by increasing the number
of solvating water molecules. With these choices, the relative errors compared to the full EOM-CCSD calculations are
around 0–2% across the entire test set. There is not a significant preference between the SS and LR formalisms, as they
alternate for the best agreement with the full CC calculations. We found no appreciable difference between the PTED
and PTES schemes. Hence, we recommended the PTES-LR scheme as the best compromise between computational
effort and accuracy.53

4 | CONCLUSIONS

In this work, we have reviewed how to combine CC methods with PCM, using the singles-T density approximation for
the correlation solvent effect, called PTES scheme. This scheme was introduced to avoid the coupling of the T̂ and Λ̂
amplitude equations in the ground state, and with R̂K and L̂K in the excited state. The name “singles-T" comes from the
fact that the PCM charges are computed with an approximate reduced 1PDM, formed from the single excitation T̂
amplitudes. However, the expression “singles-T" does not refer to the level of truncation chosen for the CC wave func-
tion. In fact, although our implementation of the CC-PCM method is limited to CCSD, the equations presented in this
review are general, and can be applied to higher levels of truncation. We have also discussed how the PCM-PTES
scheme changes the Λ̂ equations and the energy gradients, such that geometry optimizations and ground state proper-
ties calculations (such as the dipole moment) can be performed for solvated molecules at CC level. We then introduced
the theory for excited states in the SS and LR formalisms. The former is based on the response of the solvent to the
excited state density of the solute, while in the latter the solvent responds to the transition density. It was shown that
the SS formalism reproduces the mutual electrostatic polarization interaction between solute and solvent, while the LR
formalism models dispersion interactions.67,68,94 For both formalisms, we presented the equations for the energy and
for the energy gradients. For LR, we also presented the equations for the evaluation of linear response properties, such
as the electric polarizability or the specific rotation. Finally, we have shown how the same theoretical framework can
be applied to polarizable force fields, specifically those based on the induced dipole model, in a way that is transparent
to the CC equations.

For all these cases, we discussed the extra computational cost due to the PTES scheme, which scales at most as O
(N5), because this is the scaling to evaluate the various forms of the 1PDMs necessary in ground and excited state calcu-
lations. Since CCSD scales as O(N6), the CCSD-PCM-PTES method costs the same as in vacuo CCSD. The only excep-
tion is the SS formalism for the evaluation of the excited state energy, because the solvent couples the R̂K and L̂K

amplitude equations. Nevertheless, this is computationally cheaper and possibly better defined than the full PTED
scheme, where the equations for the T̂, Λ̂ k, R̂K , and L̂K amplitudes are all coupled, and the T̂ amplitudes are computed
in the presence of the excited state PCM charges. Even for the LR formalism, the PTES scheme is better defined than
the PTED scheme, because in the latter the solvent would couple the equations for the perturbed T̂ and Λ̂ amplitudes.
This coupling is usually neglected in the LR response part of the calculation,12,28,52 creating an inconsistency in the
level of approximation for the energy and the corresponding linear response function. Such inconsistency is avoided in
the PTES scheme, because the T̂/Λ̂ coupling is removed in the energy expression, and the amplitudes equations are nat-
urally decoupled in the LR function. Overall, the CC-PCM-PTES-LR method is virtually identical in cost to in vacuo
LR-CC.

In Section 3, we discussed a series of applications of the methods detailed in Section 2. These applications targeted
comparisons with experimental data, and internal comparisons between the PTED and PTES schemes, for both ground
and excited state properties. We showed that the PTES scheme provides results that are very close to those of PTED, at
a fraction of the computational cost. We also showed that neglecting the contributions of the solvent in the CC equa-
tions (i.e., the PTE scheme) reduces the agreement with experiment, see Tables 2, 3, or it can lead to wrong qualitative
trends, see Tables 4, 5. Solvation effects are also important for molecular properties, like the specific rotation in Table 7.
We employed the excited state energy gradients for the PTES-LR scheme to study the absorption and emission spectra
of DMABN, which shows dual fluorescence in polar solvents. This example allowed us to outline some limitations of
the LR and SS formalisms in implicit models. In particular, the LR underestimates the stabilization of the CT state in
polar solvents, while the SS formalism overestimates it, so that each formalism gets the order of the states wrong in
either the polar or the nonpolar solvents, see Figures 7 and 8. Combining the two effects as a single correction to the
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excitation energy computed with the solvent reaction field of the ground state improves the results, but this is not
enough to recover the correct experimental trends. This is probably due to intrinsic limitations of implicit solvation
models, where nonelectrostatic interactions and direct solute-solvent interactions are difficult to mimic. A combined
approach, where the H-bonding effect computed with a lower and less demanding level of theory (e.g., DFT) are intro-
duced as a correction to the CC-PCM energies, may help to overcome these limitations, and improve the agreement
with experiment.51 Alternatively, one can employ explicit polarizable force fields, using the same approximate schemes
devised for PCM. In fact, we showed that the MMPol-PTES scheme can reproduce the same trends of transition ener-
gies computed with full EOM-CCSD for a series of microsolvated organic molecules, see Figure 9 and Reference 53.

Despite some of their limitations, PCM and other implicit solvation models are a fast and reliable way to account
for solvent effects in correlation calculations. In particular, the CC-PCM-PTES scheme has the same computational cost
as in vacuo CC, and it has the potential to become as widely used as DFT-PCM for studying solvated molecules. The
CC-PCM combination is not limited in principle to only ground state and linear response calculations, and we are cur-
rently working to extend it to higher order properties.
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